向日葵app官方网站

今天是
新聞資訊
你的位置:首頁 > 新聞資訊 > 行業新聞

直流穩壓電源電路設計工程師如何理解EMC?

2020-2-15 15:47:44??????點擊:
電磁干擾(Electromagnetic Interference),簡稱EMI,有傳導干擾和輻射干擾兩種。傳導干擾主要是直流穩壓電源等電子設備產生的干擾信號通過導電介質或公共電源線互相產生干擾;

輻射干擾是指直流穩壓電源等電子設備產生的干擾信號通過空間耦合把干擾信號傳給另一個電網絡或直流穩壓電源等電子設備。為了防止一些電子產品產生的電磁干擾影響或破壞其它直流穩壓電源等電子設備的正常工作,各國政府或一些國際組織都相繼提出或制定了一些對電子產品產生電磁干擾有關規章或標準,符合這些規章或標準的產品就可稱為具有電磁兼容性EMC(Electromagnetic Compatibility)。

電磁兼容性EMC 標準不是恒定不變的,而是天天都在改變,這也是各國政府或經濟組織,保護自己利益經常采取的手段。

EMC標準及測試

國際標準
1、國際電工委員為IEC
2、國際標準華組織ISO
3、電氣電子工程師學會IEEE
4、歐盟電信標準委員會ETSI
5、國際無線電通信咨詢委員CCIR
6、國際通訊聯盟ITU
6、國際電工委員會IEC有以下分會進行EMC標準研究
-CISPR:國際無線電干擾特別委員會
-TC77:電氣設備(包括電網)內電磁兼容技術委員會
-TC65:工業過程測量和控制

國際標準化組織
1、FCC聯邦通
2、VDE德國電氣工程師協會
3、VCCI日本民間干擾
4、BS英國標準
5、ABSI美國國家標準
6、GOSTR俄羅斯政府標準
7、GB、GB/T中國國家標準

EMI測試
1、輻射騷擾電磁場(RE)
2、騷擾功率(DP)
3、傳導騷擾(CE)
4、諧波電路(Harmonic)
5、電壓波動及閃爍(Flicker)
6、瞬態騷擾電源(TDV)

EMS測試
1、輻射敏感度試驗(RS)
2、工頻次次輻射敏感度試驗(PMS)
3、靜電放電抗擾度(ESD)
4、射頻場感應的傳導騷擾抗擾度測試(CS)
5、電壓暫降,短時中斷和電壓變化抗擾度測試(DIP)
6、浪涌(沖擊)抗擾度測試(SURGE)
7、電快速瞬變脈沖群抗擾度測試(EFT/B)
8、電力線感應/接觸(Power induction/contact)

EMC測試結果的評價
A級:實驗中技術性能指標正常
B級:試驗中性能暫時降低,功能不喪失,實驗后能自行恢復
C級:功能允許喪失,但能自恢復,或操作者干預后能恢復
R級:除保護元件外,不允許出現因設備(元件)或軟件損壞數據丟失而造成不能恢復的功能喪失或性能降低。
5、電壓暫降,短時中斷和電壓變化抗擾度測試(DIP)
6、浪涌(沖擊)抗擾度測試(SURGE)
7、電快速瞬變脈沖群抗擾度測試(EFT/B)
8、電力線感應/接觸(Power induction/contact)

EMC理論

EMC理論
-電磁干擾的時域與頻域描述 :時域特性

-電磁干擾的時域與頻域描述 :頻域特性

-電磁干擾的時域與頻域描述 :周期梯形波的

-電磁干擾的時域與頻域描述:寬帶噪聲

-電磁干擾的時域與頻域描述:時鐘與數據噪聲

-分貝(dB)的概念
分貝是電磁兼容中常用的基本單位。
定義為兩個功率的比:

傳導干擾耦合形式

1、共阻抗耦合

-由兩個回路經公共阻抗耦合而產生,干擾量是電流i,或變化的電流di/dt。

2、容性耦合

-在干擾源與干擾對稱之間存在著耦合的分布電容而產生,干擾量是變化的電場,即變化的電壓du/dt。

3、感性耦合

-在干擾源與干擾對稱之間存在著互感而產生,干擾量是變化的磁場,即變化的電流di/dt。
-電場與磁場

電場:導體之間的電壓產生電場
-電場強度單位:V/m
磁場:導體上的電流產生磁場
-磁場強度單位:A/m
波阻抗:Zo=E/H
差模輻射與共模輻射
1、差模輻射:電流在信號環路中流動產生

2、共模輻射:由于導體的電位高于參考電位產生

3、PCB主要產生差模輻射

4、線纜主要產生共模輻射

5、差模輻射電場的計算

其中 :
E:電場強度(V/m)
f :電流的頻率(MHz)
A:電流的環路面積(cm2)
I :電流的強度(mA)
r :測試點到電流環路的距離(m)
6、共模輻射電場的計算

其中 :
E:電場強度(V/m)
f :電流的頻率(MHz)
L:電纜的長度(m)
I :電流的強度(mA)
r :測試點到電流環路的距離(m)
7、屏蔽的基本理論和設計要點

7.1屏蔽效能計算公式:
SE(dB)= R(dB)+A(dB)+B(dB)
R(dB)-reflection loss
A(dB)-absorption
B(dB)-re-reflection loss

7.2屏蔽設計的基本原則:
a、屏蔽體結構簡潔,盡可能減少不必要的孔洞,盡可能不要增加額外的縫隙;
b、避免開細長孔,通風孔盡量采用圓孔并陣列排放。屏蔽和散熱有矛盾時盡可能開小孔,多開孔,避免開大孔;
c、足夠重視電纜的處理措施,電纜的處理往往比屏蔽本身還重要;
d、屏蔽體的電連續性是影響結構件屏蔽效能最主要的因素,相對而言,一般材料本身屏蔽性能以及材料厚度的影響是微不足道的(低頻磁場例外);
e、注意控制成本;

EMC設計
EMC屏蔽設計
1、通風孔及開口設

2、結構搭接縫屏蔽設計

3、電纜從屏蔽體內穿出
如果導體從屏蔽體中穿出去,將對屏蔽體的屏蔽效能產生顯著的劣化作用。這種穿透比較典型的是電纜從屏蔽體中穿出。

4、穿出屏蔽體電纜的設計原則:
a、采用屏蔽電纜時,屏蔽電纜在出屏蔽體時,采用夾線結構,保證電纜屏蔽層與屏蔽體之間可靠接地,提供足夠低的接觸阻抗。
b、采用屏蔽電纜時,用屏蔽連接器轉接將信號接出屏蔽體,通過連接器保證電纜屏蔽層的可靠接地。
c、采用非屏蔽電纜時,采用濾波連接器轉接,由于濾波器通高頻的特性,保證電纜與屏蔽體之間有足夠低的高頻阻抗。
d、采用非屏蔽電纜時,電纜在屏蔽體的內側(或者外側)要足夠短,使干擾信號不能有效地耦合出去,從而減小了電纜穿透的影響。
e、電源線通過電源濾波器出屏蔽體,由于濾波器通高頻的特性,保證電源線與屏蔽體之間有足夠低的高頻阻抗。
f、采用光纖出線。由于光纖本身沒有金屬體,也就不存在電纜穿透的問題。
5、不良接地

6、屏蔽材料及應用(導電布、簧片、導電橡膠)

7、截止波導通風板

8、良好接地

EMC接地設計

1、接地的概念及目的
a、一是為了安全,稱為保護接地。直流穩壓電源等電子設備的金屬外殼必須接大地,這樣可以避免因事故導致金屬外殼上出現過高對地電壓而危及操作人員和設備的安全。
b、二是為電流返回其源提供低阻抗通道,即工作接地。
c、防雷接地,為雷擊提供電流泄放。
2、接地提供信號回流
直流穩壓電源電路設計工程師如何理解EMC?

3、單點接地
適用于工作頻率1MHz以下系統
4、多點接地及混合接地
EMC濾波設計
1、濾波
a、濾波電路是由電感、電容、電阻、鐵氧體磁珠和共模線圈構成的頻率選擇性網絡,阻止某段頻率范圍內的信號沿線傳遞。
b、 濾波電路種類:反射、吸收。
2、濾波器件
a、電容(通用電容、三端電容)
b、電感(通用電感、共模電感、磁珠)
c、電阻
3、基本的濾波形式

4、差模濾波與共模濾波設計:

5、電容和三端電容特性

6、共模扼流圈

7、鐵氧體磁珠